Monotone and near-monotone network structure (part II)
نویسنده
چکیده
We next describe recent work on monotone input/output systems (“MIOS” from now on). Monotone i/o systems originated in the analysis of mitogen-activated protein kinase cascades and other cell signaling networks, but later proved useful in the study of a broad variety of other biological models. Their surprising breath of applicability notwithstanding, of course MIOS constitute a restricted class of models, especially when seen in the context of large biochemical networks. Indeed, the original motivation for introducing MIOS, in the 2003 paper [1], was to study an existing non-monotone model of negative feedback in MAPK cascades. The key breakthrough was the realization that this example, and, as it turned out, many others, can be profitably studied by decompositions into MIOS. In other words, a non-monotone system is viewed as an interconnection of monotone subsystems. Based on the architecture of the interconnections between the subsystems (“network structure”), one deduces properties of the original, non-monotone, system. (Later work, starting with [2], showed that even monotone systems can be usefully studied through this decomposition-based approach.)
منابع مشابه
Monotone and near-monotone network structure (part I)
This paper (parts I and II) provides an expository introduction to monotone and near-monotone dynamical systems associated to biochemical networks, those whose graphs are consistent or near-consistent. Many conclusions can be drawn from signed network structure, associated to purely stoichiometric information and ignoring fluxes. In particular, monotone systems respond in a predictable fashion ...
متن کاملMonotone and near-monotone network structure
This paper provides an expository introduction to monotone and near-monotone biochemical network structures. Monotone systems respond in a predictable fashion to perturbations, and have very robust dynamical characteristics. This makes them reliable components of more complex networks, and suggests that natural biological systems may have evolved to be, if not monotone, at least close to monoto...
متن کاملFr{'e}chet and Hausdorff Queries on $x$-Monotone Trajectories
vspace{0.2cm}In this paper, we design a data structure for the following problem. Let $pi$ be an $x$-monotone trajectory with $n$ vertices in the plane and $epsilon >0$. We show how to preprocess $pi$ and $epsilon$ into a data structure such that for any horizontal query segment $Q$ in the plane, one can quickly determine the minimal continuous fraction of $pi$ whose Fr{'e}chet and Hausdo...
متن کاملMonotone and Near-Monotone Systems
This paper provides an expository introduction to monotone and nearmonotone biochemical network structures. Monotone systems respond in a predictable fashion to perturbations, and have very robust dynamical characteristics. This makes them reliable components of more complex networks, and suggests that natural biological systems may have evolved to be, if not monotone, at least close to monoton...
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006